Docosahexaenoic Acid Supplementation Does Not Improve Western Diet-Induced Cardiomyopathy in Rats
نویسندگان
چکیده
Obesity increases risk for cardiomyopathy in the absence of hypertension, diabetes or ischemia. The fatty acid milieu, modulated by diet, may modify myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy. We sought to identify gross, cellular and ultrastructural myocardial changes associated with Western diet intake, and subsequent modification with docosahexaenoic acid (DHA) supplementation. Wistar and Sprague-Dawley (SD) rats received 1 of 3 diets: control (CON); Western (WES); Western + DHA (WES+DHA). After 12 weeks of treatment, echocardiography was performed and myocardial adiponectin, fatty acids, collagen, area occupied by lipid and myocytes, and ultrastructure were determined. Strain effects included higher serum adiponectin in Wistar rats, and differences in myocardial fatty acid composition. Diet effects were evident in that both WES and WES+DHA feeding were associated with similarly increased left ventricular (LV) diastolic cranial wall thickness (LVW(cr/d)) and decreased diastolic internal diameter (LVID(d)), compared to CON. Unexpectedly, WES+DHA feeding was associated additionally with increased thickness of the LV cranial wall during systole (LVW(cr/s)) and the caudal wall during diastole (LVW(ca/d)) compared to CON; this was observed concomitantly with increased serum and myocardial adiponectin. Diastolic dysfunction was present in WES+DHA rats compared to both WES and CON. Myocyte cross sectional area (CSA) was greater in WES compared to CON rats. In both fat-fed groups, transmission electron microscopy (TEM) revealed myofibril degeneration, disorganized mitochondrial cristae, lipid inclusions and vacuolation. In the absence of hypertension and whole body insulin resistance, WES+DHA intake was associated with more global LV thickening and with diastolic dysfunction, compared to WES feeding alone. Myocyte hypertrophy, possibly related to subcellular injury, is an early change that may contribute to gross hypertrophy. Strain differences in adipokines and myocardial fatty acid accretion may underlie heterogeneous data from rodent studies.
منابع مشابه
Arachidonic acid supplementation does not affect N-methyl-N-nitrosourea-induced renal preneoplastic lesions in young Lewis rats
Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standards of Codex Alimentarius. However, few studies of the possible renal carcinogenic effects of AA supplementation during neonatal life have been performed. The ef...
متن کاملDocosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr-/- mice
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major public health concern in western societies. Nonalcoholic steatohepatitis (NASH), the progressive form of NAFLD, is characterized by hepatic steatosis, inflammation, oxidative stress and fibrosis. NASH is a risk factor for cirrhosis and hepatocellular carcinoma. NASH is predicted to be the leading cause of liver transplants by 2020. ...
متن کاملNeuropathological Responses to Chronic NMDA in Rats Are Worsened by Dietary n-3 PUFA Deprivation but Are Not Ameliorated by Fish Oil Supplementation
BACKGROUND Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabo...
متن کاملTreatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca -Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium
Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and...
متن کاملTreatment with docosahexaenoic acid, but not eicosapentaenoic acid, delays Ca2+-induced mitochondria permeability transition in normal and hypertrophied myocardium.
Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012